Browse Source

implement spectrum analyzer

Partly implements https://todo.sr.ht/~alextee/zrythm-feature/518.
translate
Alexandros Theodotou 3 months ago
parent
commit
7aecc203c5
Signed by: alex
GPG Key ID: 022EAE42313D70F3
  1. 9
      data/css-themes/zrythm/theme.scss
  2. 49
      ext/kissfft/.gitignore
  3. 123
      ext/kissfft/CHANGELOG
  4. 11
      ext/kissfft/COPYING
  5. 35
      ext/kissfft/LICENSES/BSD-3-Clause
  6. 30
      ext/kissfft/LICENSES/Unlicense
  7. 323
      ext/kissfft/Makefile
  8. 245
      ext/kissfft/README.md
  9. 78
      ext/kissfft/README.simd
  10. 39
      ext/kissfft/TIPS
  11. 167
      ext/kissfft/_kiss_fft_guts.h
  12. 109
      ext/kissfft/kfc.c
  13. 54
      ext/kissfft/kfc.h
  14. 420
      ext/kissfft/kiss_fft.c
  15. 160
      ext/kissfft/kiss_fft.h
  16. 36
      ext/kissfft/kiss_fft_log.h
  17. 188
      ext/kissfft/kiss_fftnd.c
  18. 26
      ext/kissfft/kiss_fftnd.h
  19. 120
      ext/kissfft/kiss_fftndr.c
  20. 55
      ext/kissfft/kiss_fftndr.h
  21. 155
      ext/kissfft/kiss_fftr.c
  22. 54
      ext/kissfft/kiss_fftr.h
  23. 361
      ext/kissfft/kissfft.hh
  24. 10
      ext/kissfft/kissfft.pc.in
  25. 304
      ext/kissfft/kissfft_i32.hh
  26. 8
      ext/kissfft/meson.build
  27. 1
      ext/meson.build
  28. 44
      inc/audio/peak_fall_smooth.h
  29. 30
      inc/audio/port.h
  30. 20
      inc/gui/widgets/cpu.h
  31. 22
      inc/gui/widgets/header.h
  32. 24
      inc/gui/widgets/live_waveform.h
  33. 76
      inc/gui/widgets/spectrum_analyzer.h
  34. 21
      inc/gui/widgets/top_bar.h
  35. 10
      inc/utils/dsp.h
  36. 2
      inc/zrythm_app.h
  37. 2
      meson.build
  38. 10
      resources/ui/header.ui
  39. 10
      src/audio/fader.c
  40. 1
      src/audio/meson.build
  41. 57
      src/audio/peak_fall_smooth.c
  42. 7
      src/gui/widgets/header.c
  43. 19
      src/gui/widgets/live_waveform.c
  44. 1
      src/gui/widgets/meson.build
  45. 447
      src/gui/widgets/spectrum_analyzer.c
  46. 3
      src/gui/widgets/track_input_expander.c
  47. 1
      src/meson.build
  48. 4
      src/project.c
  49. 10
      src/utils/dsp.c
  50. 20
      tests/benchmarks/dsp.c

9
data/css-themes/zrythm/theme.scss

@ -1,5 +1,5 @@ @@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: © 2018-2022 Alexandros Theodotou <alex@zrythm.org>
* SPDX-FileCopyrightText: © 2018-2023 Alexandros Theodotou <alex@zrythm.org>
* SPDX-License-Identifier: LicenseRef-ZrythmLicense
*/
@ -507,3 +507,10 @@ fader-buttons button { @@ -507,3 +507,10 @@ fader-buttons button {
padding-left: 5px;
padding-right: 5px;
}
.signal-preview {
border-color: gtkalpha(white,0.2);
border-style: solid;
border-radius: 4px;
border-width: 1px;
}

49
ext/kissfft/.gitignore vendored

@ -0,0 +1,49 @@ @@ -0,0 +1,49 @@
*.o
*.swp
*.so
*.so.*
*.a
*.dylib
test/testcpp
test/bm_fftw_double
test/bm_fftw_float
test/bm_fftw_int16_t
test/bm_fftw_int32_t
test/bm_fftw_simd
test/bm_kiss_double
test/bm_kiss_float
test/bm_kiss_int16_t
test/bm_kiss_int32_t
test/bm_kiss_simd
test/st_double
test/st_float
test/st_int16_t
test/st_int32_t
test/st_simd
test/tkfc_double
test/tkfc_float
test/tkfc_int16_t
test/tkfc_int32_t
test/tkfc_simd
test/tr_double
test/tr_float
test/tr_int16_t
test/tr_int32_t
test/tr_simd
tools/fastconv_double
tools/fastconv_float
tools/fastconv_int16_t
tools/fastconv_int32_t
tools/fastconv_simd
tools/fastconvr_double
tools/fastconvr_float
tools/fastconvr_int16_t
tools/fastconvr_int32_t
tools/fastconvr_simd
tools/fft_double
tools/fft_float
tools/fft_int16_t
tools/fft_int32_t
tools/fft_simd
test/test_simd
build

123
ext/kissfft/CHANGELOG vendored

@ -0,0 +1,123 @@ @@ -0,0 +1,123 @@
1.3.0 2012-07-18
removed non-standard malloc.h from kiss_fft.h
moved -lm to end of link line
checked various return values
converted python Numeric code to NumPy
fixed test of int32_t on 64 bit OS
added padding in a couple of places to allow SIMD alignment of structs
1.2.9 2010-05-27
threadsafe ( including OpenMP )
first edition of kissfft.hh the C++ template fft engine
1.2.8
Changed memory.h to string.h -- apparently more standard
Added openmp extensions. This can have fairly linear speedups for larger FFT sizes.
1.2.7
Shrank the real-fft memory footprint. Thanks to Galen Seitz.
1.2.6 (Nov 14, 2006) The "thanks to GenArts" release.
Added multi-dimensional real-optimized FFT, see tools/kiss_fftndr
Thanks go to GenArts, Inc. for sponsoring the development.
1.2.5 (June 27, 2006) The "release for no good reason" release.
Changed some harmless code to make some compilers' warnings go away.
Added some more digits to pi -- why not.
Added kiss_fft_next_fast_size() function to help people decide how much to pad.
Changed multidimensional test from 8 dimensions to only 3 to avoid testing
problems with fixed point (sorry Buckaroo Banzai).
1.2.4 (Oct 27, 2005) The "oops, inverse fixed point real fft was borked" release.
Fixed scaling bug for inverse fixed point real fft -- also fixed test code that should've been failing.
Thanks to Jean-Marc Valin for bug report.
Use sys/types.h for more portable types than short,int,long => int16_t,int32_t,int64_t
If your system does not have these, you may need to define them -- but at least it breaks in a
loud and easily fixable way -- unlike silently using the wrong size type.
Hopefully tools/psdpng.c is fixed -- thanks to Steve Kellog for pointing out the weirdness.
1.2.3 (June 25, 2005) The "you want to use WHAT as a sample" release.
Added ability to use 32 bit fixed point samples -- requires a 64 bit intermediate result, a la 'long long'
Added ability to do 4 FFTs in parallel by using SSE SIMD instructions. This is accomplished by
using the __m128 (vector of 4 floats) as kiss_fft_scalar. Define USE_SIMD to use this.
I know, I know ... this is drifting a bit from the "kiss" principle, but the speed advantages
make it worth it for some. Also recent gcc makes it SOO easy to use vectors of 4 floats like a POD type.
1.2.2 (May 6, 2005) The Matthew release
Replaced fixed point division with multiply&shift. Thanks to Jean-Marc Valin for
discussions regarding. Considerable speedup for fixed-point.
Corrected overflow protection in real fft routines when using fixed point.
Finder's Credit goes to Robert Oschler of robodance for pointing me at the bug.
This also led to the CHECK_OVERFLOW_OP macro.
1.2.1 (April 4, 2004)
compiles cleanly with just about every -W warning flag under the sun
reorganized kiss_fft_state so it could be read-only/const. This may be useful for embedded systems
that are willing to predeclare twiddle factors, factorization.
Fixed C_MUL,S_MUL on 16-bit platforms.
tmpbuf will only be allocated if input & output buffers are same
scratchbuf will only be allocated for ffts that are not multiples of 2,3,5
NOTE: The tmpbuf,scratchbuf changes may require synchronization code for multi-threaded apps.
1.2 (Feb 23, 2004)
interface change -- cfg object is forward declaration of struct instead of void*
This maintains type saftey and lets the compiler warn/error about stupid mistakes.
(prompted by suggestion from Erik de Castro Lopo)
small speed improvements
added psdpng.c -- sample utility that will create png spectrum "waterfalls" from an input file
( not terribly useful yet)
1.1.1 (Feb 1, 2004 )
minor bug fix -- only affects odd rank, in-place, multi-dimensional FFTs
1.1 : (Jan 30,2004)
split sample_code/ into test/ and tools/
Removed 2-D fft and added N-D fft (arbitrary)
modified fftutil.c to allow multi-d FFTs
Modified core fft routine to allow an input stride via kiss_fft_stride()
(eased support of multi-D ffts)
Added fast convolution filtering (FIR filtering using overlap-scrap method, with tail scrap)
Add kfc.[ch]: the KISS FFT Cache. It takes care of allocs for you ( suggested by Oscar Lesta ).
1.0.1 (Dec 15, 2003)
fixed bug that occurred when nfft==1. Thanks to Steven Johnson.
1.0 : (Dec 14, 2003)
changed kiss_fft function from using a single buffer, to two buffers.
If the same buffer pointer is supplied for both in and out, kiss will
manage the buffer copies.
added kiss_fft2d and kiss_fftr as separate source files (declarations in kiss_fft.h )
0.4 :(Nov 4,2003) optimized for radix 2,3,4,5
0.3 :(Oct 28, 2003) woops, version 2 didn't actually factor out any radices other than 2.
Thanks to Steven Johnson for finding this one.
0.2 :(Oct 27, 2003) added mixed radix, only radix 2,4 optimized versions
0.1 :(May 19 2003) initial release, radix 2 only

11
ext/kissfft/COPYING vendored

@ -0,0 +1,11 @@ @@ -0,0 +1,11 @@
Copyright (c) 2003-2010 Mark Borgerding . All rights reserved.
KISS FFT is provided under:
SPDX-License-Identifier: BSD-3-Clause
Being under the terms of the BSD 3-clause "New" or "Revised" License,
according with:
LICENSES/BSD-3-Clause

35
ext/kissfft/LICENSES/BSD-3-Clause vendored

@ -0,0 +1,35 @@ @@ -0,0 +1,35 @@
Valid-License-Identifier: BSD-3-Clause
SPDX-URL: https://spdx.org/licenses/BSD-3-Clause.html
Usage-Guide:
To use the BSD 3-clause "New" or "Revised" License put the following SPDX
tag/value pair into a comment according to the placement guidelines in
the licensing rules documentation:
SPDX-License-Identifier: BSD-3-Clause
License-Text:
Copyright (c) <year> <owner> . All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30
ext/kissfft/LICENSES/Unlicense vendored

@ -0,0 +1,30 @@ @@ -0,0 +1,30 @@
Valid-License-Identifier: Unlicense
SPDX-URL: https://spdx.org/licenses/Unlicense.html
Usage-Guide:
To use the Unlicense put the following SPDX tag/value pair into a
comment according to the placement guidelines in the licensing rules
documentation:
SPDX-License-Identifier: Unlicense
License-Text:
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute
this software, either in source code form or as a compiled binary, for any
purpose, commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and
to the detriment of our heirs and successors. We intend this dedication to be
an overt act of relinquishment in perpetuity of all present and future rights
to this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

323
ext/kissfft/Makefile vendored

@ -0,0 +1,323 @@ @@ -0,0 +1,323 @@
#
# Semantic versioning
#
# KFVER_MAJOR denotes the ABI version.
#
# - It must be bumped only if API public members are removed or
# changed in the incompatible
#
# KFVER_MINOR denotes the minor version within a compatible ABI.
#
# - It should be bumped if new API public members are added
# (but not removed!) so programs linked against the same library
# version continue operating properly
#
# KFVER_PATCH denotes bugfix count since the last minor update.
#
# - It should be bumped whenever a bug fix is pushed.
#
export KFVER_MAJOR = 131
export KFVER_MINOR = 1
export KFVER_PATCH = 0
#
# Data type (float / int16_t / int32_t / simd)
#
export KISSFFT_DATATYPE ?= float
#
# Default options
#
export KISSFFT_OPENMP ?= 0
export KISSFFT_STATIC ?= 0
export KISSFFT_TOOLS ?= 1
export KISSFFT_USE_ALLOCA ?= 0
#
# Installation directories
#
PREFIX ?= /usr/local
export ABS_PREFIX = $(abspath $(PREFIX))
BINDIR ?= $(ABS_PREFIX)/bin
export ABS_BINDIR = $(abspath $(BINDIR))
INCLUDEDIR ?= $(ABS_PREFIX)/include
export ABS_INCLUDEDIR = $(abspath $(INCLUDEDIR))
export ABS_PKGINCLUDEDIR = $(ABS_INCLUDEDIR)/kissfft
#
# Override LIBDIR with lib64 following CMake's
# GNUInstallDirs logic:
#
CANDIDATE_LIBDIR_NAME = lib
ifneq ($(MAKECMDGOALS),clean)
ifeq ($(shell uname -s),Linux)
_UNAME_ARCH = $(shell uname -i)
ifeq (,$(_UNAME_ARCH))
_UNAME_ARCH = $(shell uname -m)
ifeq (,$(_UNAME_ARCH))
$(warning WARNING: Can not detect system architecture!)
endif
endif
ifeq ($(_UNAME_ARCH),x86_64)
CANDIDATE_LIBDIR_NAME = lib64
endif
endif
endif
CANDIDATE_LIBDIR = $(PREFIX)/$(CANDIDATE_LIBDIR_NAME)
LIBDIR ?= $(CANDIDATE_LIBDIR)
export ABS_LIBDIR = $(abspath $(LIBDIR))
export INSTALL ?= install
#
# Library name and version
#
ifeq ($(KISSFFT_OPENMP), 1)
KISSFFTLIB_SHORTNAME = kissfft-$(KISSFFT_DATATYPE)-openmp
KISSFFT_PKGCONFIG = kissfft-$(KISSFFT_DATATYPE)-openmp.pc
KISSFFTLIB_FLAGS = -fopenmp
TYPEFLAGS = -fopenmp
PKGCONFIG_OPENMP = -fopenmp
else
KISSFFTLIB_SHORTNAME = kissfft-$(KISSFFT_DATATYPE)
KISSFFT_PKGCONFIG = kissfft-$(KISSFFT_DATATYPE).pc
TYPEFLAGS =
PKGCONFIG_OPENMP =
endif
ifeq ($(KISSFFT_STATIC), 1)
KISSFFTLIB_NAME = lib$(KISSFFTLIB_SHORTNAME).a
KISSFFTLIB_FLAGS += -static
else ifeq ($(shell uname -s),Darwin)
KISSFFTLIB_NAME = lib$(KISSFFTLIB_SHORTNAME).dylib
KISSFFTLIB_FLAGS += -shared -Wl,-install_name,$(KISSFFTLIB_NAME)
else
KISSFFTLIB_SODEVELNAME = lib$(KISSFFTLIB_SHORTNAME).so
KISSFFTLIB_SONAME = $(KISSFFTLIB_SODEVELNAME).$(KFVER_MAJOR)
KISSFFTLIB_NAME = $(KISSFFTLIB_SONAME).$(KFVER_MINOR).$(KFVER_PATCH)
KISSFFTLIB_FLAGS += -shared -Wl,-soname,$(KISSFFTLIB_SONAME)
endif
export KISSFFTLIB_SHORTNAME
#
# Compile-time definitions by datatype
#
#
# Note: -DKISS_FFT_BUILD and -DKISS_FFT_SHARED control
# C symbol visibility.
#
ifeq "$(KISSFFT_DATATYPE)" "int32_t"
TYPEFLAGS += -DFIXED_POINT=32
else ifeq "$(KISSFFT_DATATYPE)" "int16_t"
TYPEFLAGS += -DFIXED_POINT=16
else ifeq "$(KISSFFT_DATATYPE)" "simd"
TYPEFLAGS += -DUSE_SIMD=1 -msse
else ifeq "$(KISSFFT_DATATYPE)" "float"
TYPEFLAGS += -Dkiss_fft_scalar=$(KISSFFT_DATATYPE)
else ifeq "$(KISSFFT_DATATYPE)" "double"
TYPEFLAGS += -Dkiss_fft_scalar=$(KISSFFT_DATATYPE)
else
$(error ERROR: KISSFFT_DATATYPE must be one of: float double int16_t int32_t simd)
endif
ifneq ($(KISSFFT_STATIC), 1)
TYPEFLAGS += -DKISS_FFT_SHARED
endif
ifeq ($(KISSFFT_USE_ALLOCA), 1)
TYPEFLAGS += -DKISS_FFT_USE_ALLOCA=1
endif
#
# Compile-time definitions
#
#
# Save pkgconfig variables before appending
# -DKISS_FFT_BUILD to TYPEFLAGS
#
ifneq ($(shell uname -s),Darwin)
PKGCONFIG_KISSFFT_VERSION = $(KFVER_MAJOR).$(KFVER_MINOR).$(KFVER_PATCH)
PKGCONFIG_KISSFFT_OUTPUT_NAME = $(KISSFFTLIB_SHORTNAME)
PKGCONFIG_PKG_KISSFFT_DEFS = $(TYPEFLAGS)
PKGCONFIG_KISSFFT_PREFIX = $(ABS_PREFIX)
ifeq ($(ABS_INCLUDEDIR),$(ABS_PREFIX)/include)
PKGCONFIG_KISSFFT_INCLUDEDIR = $${prefix}/include
else
PKGCONFIG_KISSFFT_INCLUDEDIR = $(ABS_INCLUDEDIR)
endif
ifeq ($(ABS_LIBDIR),$(ABS_PREFIX)/$(CANDIDATE_LIBDIR_NAME))
PKGCONFIG_KISSFFT_LIBDIR = $${prefix}/$(CANDIDATE_LIBDIR_NAME)
else
PKGCONFIG_KISSFFT_LIBDIR = $(ABS_LIBDIR)
endif
PKGCONFIG_KISSFFT_PKGINCLUDEDIR = $${includedir}/kissfft
endif
export TYPEFLAGS
# Compile .c into .o
#
#
# -DKISS_FFT_BUILD is used for library artifacts, so
# consumer executable in 'test' and 'tools' do _NOT_
# need it. pkg-config output does not need it either.
#
%.c.o: %.c
$(CC) -Wall -fPIC \
-o $@ \
$(CFLAGS) $(TYPEFLAGS) -DKISS_FFT_BUILD \
-c $<
#
# Target: "make all"
#
all: kfc.c.o kiss_fft.c.o kiss_fftnd.c.o kiss_fftndr.c.o kiss_fftr.c.o
ifneq ($(KISSFFT_STATIC), 1)
$(CC) $(KISSFFTLIB_FLAGS) -o $(KISSFFTLIB_NAME) $^
ifneq ($(shell uname -s),Darwin)
ln -sf $(KISSFFTLIB_NAME) $(KISSFFTLIB_SONAME)
ln -sf $(KISSFFTLIB_NAME) $(KISSFFTLIB_SODEVELNAME)
endif
else
$(AR) crus $(KISSFFTLIB_NAME) $^
endif
ifneq ($(KISSFFT_TOOLS), 0)
make -C tools CFLAGADD="$(CFLAGADD)" all
endif
#
# Target: "make install"
#
install: all
$(INSTALL) -Dt $(ABS_PKGINCLUDEDIR) -m 644 \
kiss_fft.h \
kissfft.hh \
kiss_fftnd.h \
kiss_fftndr.h \
kiss_fftr.h
$(INSTALL) -Dt $(ABS_LIBDIR) -m 644 $(KISSFFTLIB_NAME)
ifneq ($(KISSFFT_STATIC), 1)
ifneq ($(shell uname -s),Darwin)
cd $(LIBDIR) && \
ln -sf $(KISSFFTLIB_NAME) $(KISSFFTLIB_SONAME) && \
ln -sf $(KISSFFTLIB_NAME) $(KISSFFTLIB_SODEVELNAME)
endif
endif
ifneq ($(shell uname -s),Darwin)
mkdir "$(ABS_LIBDIR)/pkgconfig"
sed \
-e 's+@PKGCONFIG_KISSFFT_VERSION@+$(PKGCONFIG_KISSFFT_VERSION)+' \
-e 's+@KISSFFT_OUTPUT_NAME@+$(PKGCONFIG_KISSFFT_OUTPUT_NAME)+' \
-e 's+@PKG_KISSFFT_DEFS@+$(PKGCONFIG_PKG_KISSFFT_DEFS)+' \
-e 's+@PKG_OPENMP@+$(PKGCONFIG_OPENMP)+' \
-e 's+@PKGCONFIG_KISSFFT_PREFIX@+$(PKGCONFIG_KISSFFT_PREFIX)+' \
-e 's+@PKGCONFIG_KISSFFT_INCLUDEDIR@+$(PKGCONFIG_KISSFFT_INCLUDEDIR)+' \
-e 's+@PKGCONFIG_KISSFFT_LIBDIR@+$(PKGCONFIG_KISSFFT_LIBDIR)+' \
-e 's+@PKGCONFIG_KISSFFT_PKGINCLUDEDIR@+$(PKGCONFIG_KISSFFT_PKGINCLUDEDIR)+' \
kissfft.pc.in 1>"$(ABS_LIBDIR)/pkgconfig/$(KISSFFT_PKGCONFIG)"
endif
ifneq ($(KISSFFT_TOOLS), 0)
make -C tools install
endif
#
# Target: "make doc"
#
doc:
$(warning Start by reading the README file. If you want to build and test lots of stuff, do a 'make testall')
$(warning but be aware that 'make testall' has dependencies that the basic kissfft software does not.)
$(warning It is generally unneeded to run these tests yourself, unless you plan on changing the inner workings)
$(warning of kissfft and would like to make use of its regression tests.)
#
# Target: "make testsingle"
#
testsingle:
make clean
make all
make -C test CFLAGADD="$(CFLAGADD)" test testcpp
#
# Target: "make testall"
#
testall:
# Shared libraries
make KISSFFT_DATATYPE=double testsingle
make KISSFFT_DATATYPE=float testsingle
make KISSFFT_DATATYPE=int16_t testsingle
# The simd and int32_t types may or may not work on your machine
make KISSFFT_DATATYPE=int32_t testsingle
make KISSFFT_DATATYPE=simd testsingle
# Static libraries
make KISSFFT_DATATYPE=double KISSFFT_STATIC=1 testsingle
make KISSFFT_DATATYPE=float KISSFFT_STATIC=1 testsingle
make KISSFFT_DATATYPE=int16_t KISSFFT_STATIC=1 testsingle
# The simd and int32_t types may or may not work on your machine
make KISSFFT_DATATYPE=int32_t KISSFFT_STATIC=1 testsingle
make KISSFFT_DATATYPE=simd KISSFFT_STATIC=1 testsingle
# OpenMP libraries
make KISSFFT_DATATYPE=double KISSFFT_OPENMP=1 testsingle
make KISSFFT_DATATYPE=float KISSFFT_OPENMP=1 testsingle
make KISSFFT_DATATYPE=int16_t KISSFFT_OPENMP=1 testsingle
# The simd and int32_t types may or may not work on your machine
make KISSFFT_DATATYPE=int32_t KISSFFT_OPENMP=1 testsingle
make KISSFFT_DATATYPE=simd KISSFFT_OPENMP=1 testsingle
$(warning All tests passed!)
#
# Target: "make tarball"
#
tarball: clean
git archive --prefix=kissfft/ -o kissfft$(KFVER).tar.gz v$(KFVER)
git archive --prefix=kissfft/ -o kissfft$(KFVER).zip v$(KFVER)
#
# Target: "make clean"
#
clean:
rm -f *.o *.a *.so *.so.*
cd test && make clean
cd tools && make clean
rm -f kiss_fft*.tar.gz *~ *.pyc kiss_fft*.zip
#
# Target: "make asm"
#
asm: kiss_fft.s
# TODO: Sort out if we should add kfc / other C headers
kiss_fft.s: kiss_fft.c kiss_fft.h _kiss_fft_guts.h
[ -e kiss_fft.s ] && mv kiss_fft.s kiss_fft.s~ || true
$(CC) -S kiss_fft.c -O3 -mtune=native -ffast-math -fomit-frame-pointer -unroll-loops -dA -fverbose-asm
$(CC) -o kiss_fft_short.s -S kiss_fft.c -O3 -mtune=native -ffast-math -fomit-frame-pointer -dA -fverbose-asm -DFIXED_POINT
[ -e kiss_fft.s~ ] && diff kiss_fft.s~ kiss_fft.s || true

245
ext/kissfft/README.md vendored

@ -0,0 +1,245 @@ @@ -0,0 +1,245 @@
# KISS FFT [![Build Status](https://travis-ci.com/mborgerding/kissfft.svg?branch=master)](https://travis-ci.com/mborgerding/kissfft)
KISS FFT - A mixed-radix Fast Fourier Transform based up on the principle,
"Keep It Simple, Stupid."
There are many great fft libraries already around. Kiss FFT is not trying
to be better than any of them. It only attempts to be a reasonably efficient,
moderately useful FFT that can use fixed or floating data types and can be
incorporated into someone's C program in a few minutes with trivial licensing.
## USAGE:
The basic usage for 1-d complex FFT is:
```c
#include "kiss_fft.h"
kiss_fft_cfg cfg = kiss_fft_alloc( nfft ,is_inverse_fft ,0,0 );
while ...
... // put kth sample in cx_in[k].r and cx_in[k].i
kiss_fft( cfg , cx_in , cx_out );
... // transformed. DC is in cx_out[0].r and cx_out[0].i
kiss_fft_free(cfg);
```
- **Note**: frequency-domain data is stored from dc up to 2pi.
so cx_out[0] is the dc bin of the FFT
and cx_out[nfft/2] is the Nyquist bin (if exists)
Declarations are in "kiss_fft.h", along with a brief description of the
functions you'll need to use.
Code definitions for 1d complex FFTs are in kiss_fft.c.
You can do other cool stuff with the extras you'll find in tools/
> - multi-dimensional FFTs
> - real-optimized FFTs (returns the positive half-spectrum:
(nfft/2+1) complex frequency bins)
> - fast convolution FIR filtering (not available for fixed point)
> - spectrum image creation
The core fft and most tools/ code can be compiled to use float, double,
Q15 short or Q31 samples. The default is float.
## BUILDING:
There are two functionally-equivalent build systems supported by kissfft:
- Make (traditional Makefiles for Unix / Linux systems)
- CMake (more modern and feature-rich build system developed by Kitware)
To build kissfft, the following build environment can be used:
- GNU build environment with GCC, Clang and GNU Make or CMake (>= 3.6)
- Microsoft Visual C++ (MSVC) with CMake (>= 3.6)
Additional libraries required to build and test kissfft include:
- libpng for psdpng tool,
- libfftw3 to validate kissfft results against it,
- python 2/3 with Numpy to validate kissfft results against it.
- OpenMP supported by GCC, Clang or MSVC for multi-core FFT transformations
Environments like Cygwin and MinGW can be highly likely used to build kissfft
targeting Windows platform, but no tests were performed to the date.
Both Make and CMake builds are easily configurable:
- `KISSFFT_DATATYPE=<datatype>` (for Make) or `-DKISSFFT_DATATYPE=<datatype>`
(for CMake) denote the principal datatype used by kissfft. It can be one
of the following:
- float (default)
- double
- int16_t
- int32_t
- SIMD (requires SSE instruction set support on target CPU)
- `KISSFFT_OPENMP=1` (for Make) or `-DKISSFFT_OPENMP=ON` (for CMake) builds kissfft
with OpenMP support. Please note that a supported compiler is required and this
option is turned off by default.
- `KISSFFT_STATIC=1` (for Make) or `-DKISSFFT_STATIC=ON` (for CMake) instructs
the builder to create static library ('.lib' for Windows / '.a' for Unix or Linux).
By default, this option is turned off and the shared library is created
('.dll' for Windows, '.so' for Linux or Unix, '.dylib' for Mac OSX)
- `-DKISSFFT_TEST=OFF` (for CMake) disables building tests for kissfft. On Make,
building tests is done separately by 'make testall' or 'make testsingle', so
no specific setting is required.
- `KISSFFT_TOOLS=0` (for Make) or `-DKISSFFT_TOOLS=OFF` (for CMake) builds kissfft
without command-line tools like 'fastconv'. By default the tools are built.
- `KISSFFT_USE_ALLOCA=1` (for Make) or `-DKISSFFT_USE_ALLOCA=ON` (for CMake)
build kissfft with 'alloca' usage instead of 'malloc' / 'free'.
- `PREFIX=/full/path/to/installation/prefix/directory` (for Make) or
`-DCMAKE_INSTALL_PREFIX=/full/path/to/installation/prefix/directory` (for CMake)
specifies the prefix directory to install kissfft into.
For example, to build kissfft as a static library with 'int16_t' datatype and
OpenMP support using Make, run the command from kissfft source tree:
```
make KISSFFT_DATATYPE=int16_t KISSFFT_STATIC=1 KISSFFT_OPENMP=1 all
```
The same configuration for CMake is:
```
mkdir build && cd build
cmake -DKISSFFT_DATATYPE=int16_t -DKISSFFT_STATIC=ON -DKISSFFT_OPENMP=ON ..
make all
```
To specify '/tmp/1234' as installation prefix directory, run:
```
make PREFIX=/tmp/1234 KISSFFT_DATATYPE=int16_t KISSFFT_STATIC=1 KISSFFT_OPENMP=1 install
```
or
```
mkdir build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/tmp/1234 -DKISSFFT_DATATYPE=int16_t -DKISSFFT_STATIC=ON -DKISSFFT_OPENMP=ON ..
make all
make install
```
## TESTING:
To validate the build configured as an example above, run the following command from
kissfft source tree:
```
make KISSFFT_DATATYPE=int16_t KISSFFT_STATIC=1 KISSFFT_OPENMP=1 testsingle
```
if using Make, or:
```
make test
```
if using CMake.
To test all possible build configurations, please run an extended testsuite from
kissfft source tree:
```
sh test/kissfft-testsuite.sh
```
Please note that the extended testsuite takes around 20-40 minutes depending on device
it runs on. This testsuite is useful for reporting bugs or testing the pull requests.
## BACKGROUND
I started coding this because I couldn't find a fixed point FFT that didn't
use assembly code. I started with floating point numbers so I could get the
theory straight before working on fixed point issues. In the end, I had a
little bit of code that could be recompiled easily to do ffts with short, float
or double (other types should be easy too).
Once I got my FFT working, I was curious about the speed compared to
a well respected and highly optimized fft library. I don't want to criticize
this great library, so let's call it FFT_BRANDX.
During this process, I learned:
> 1. FFT_BRANDX has more than 100K lines of code. The core of kiss_fft is about 500 lines (cpx 1-d).
> 2. It took me an embarrassingly long time to get FFT_BRANDX working.
> 3. A simple program using FFT_BRANDX is 522KB. A similar program using kiss_fft is 18KB (without optimizing for size).
> 4. FFT_BRANDX is roughly twice as fast as KISS FFT in default mode.
It is wonderful that free, highly optimized libraries like FFT_BRANDX exist.
But such libraries carry a huge burden of complexity necessary to extract every
last bit of performance.
**Sometimes simpler is better, even if it's not better.**
## FREQUENTLY ASKED QUESTIONS:
> Q: Can I use kissfft in a project with a ___ license?</br>
> A: Yes. See LICENSE below.
> Q: Why don't I get the output I expect?</br>
> A: The two most common causes of this are
> 1) scaling : is there a constant multiplier between what you got and what you want?
> 2) mixed build environment -- all code must be compiled with same preprocessor
> definitions for FIXED_POINT and kiss_fft_scalar
> Q: Will you write/debug my code for me?</br>
> A: Probably not unless you pay me. I am happy to answer pointed and topical questions, but
> I may refer you to a book, a forum, or some other resource.
## PERFORMANCE
(on Athlon XP 2100+, with gcc 2.96, float data type)
Kiss performed 10000 1024-pt cpx ffts in .63 s of cpu time.
For comparison, it took md5sum twice as long to process the same amount of data.
Transforming 5 minutes of CD quality audio takes less than a second (nfft=1024).
**DO NOT:**
- use Kiss if you need the Fastest Fourier Transform in the World
- ask me to add features that will bloat the code
## UNDER THE HOOD
Kiss FFT uses a time decimation, mixed-radix, out-of-place FFT. If you give it an input buffer
and output buffer that are the same, a temporary buffer will be created to hold the data.
No static data is used. The core routines of kiss_fft are thread-safe (but not all of the tools directory).[
No scaling is done for the floating point version (for speed).
Scaling is done both ways for the fixed-point version (for overflow prevention).
Optimized butterflies are used for factors 2,3,4, and 5.
The real (i.e. not complex) optimization code only works for even length ffts. It does two half-length
FFTs in parallel (packed into real&imag), and then combines them via twiddling. The result is
nfft/2+1 complex frequency bins from DC to Nyquist. If you don't know what this means, search the web.
The fast convolution filtering uses the overlap-scrap method, slightly
modified to put the scrap at the tail.
## LICENSE
Revised BSD License, see COPYING for verbiage.
Basically, "free to use&change, give credit where due, no guarantees"
Note this license is compatible with GPL at one end of the spectrum and closed, commercial software at
the other end. See http://www.fsf.org/licensing/licenses
## TODO
- Add real optimization for odd length FFTs
- Document/revisit the input/output fft scaling
- Make doc describing the overlap (tail) scrap fast convolution filtering in kiss_fastfir.c
- Test all the ./tools/ code with fixed point (kiss_fastfir.c doesn't work, maybe others)
## AUTHOR
Mark Borgerding
Mark@Borgerding.net

78
ext/kissfft/README.simd vendored

@ -0,0 +1,78 @@ @@ -0,0 +1,78 @@
If you are reading this, it means you think you may be interested in using the SIMD extensions in kissfft
to do 4 *separate* FFTs at once.
Beware! Beyond here there be dragons!
This API is not easy to use, is not well documented, and breaks the KISS principle.
Still reading? Okay, you may get rewarded for your patience with a considerable speedup
(2-3x) on intel x86 machines with SSE if you are willing to jump through some hoops.
The basic idea is to use the packed 4 float __m128 data type as a scalar element.
This means that the format is pretty convoluted. It performs 4 FFTs per fft call on signals A,B,C,D.
For complex data, the data is interlaced as follows:
rA0,rB0,rC0,rD0, iA0,iB0,iC0,iD0, rA1,rB1,rC1,rD1, iA1,iB1,iC1,iD1 ...
where "rA0" is the real part of the zeroth sample for signal A
Real-only data is laid out:
rA0,rB0,rC0,rD0, rA1,rB1,rC1,rD1, ...
Compile with gcc flags something like
-O3 -mpreferred-stack-boundary=4 -DUSE_SIMD=1 -msse
Be aware of SIMD alignment. This is the most likely cause of segfaults.
The code within kissfft uses scratch variables on the stack.
With SIMD, these must have addresses on 16 byte boundaries.
Search on "SIMD alignment" for more info.
Robin at Divide Concept was kind enough to share his code for formatting to/from the SIMD kissfft.
I have not run it -- use it at your own risk. It appears to do 4xN and Nx4 transpositions
(out of place).
void SSETools::pack128(float* target, float* source, unsigned long size128)
{
__m128* pDest = (__m128*)target;
__m128* pDestEnd = pDest+size128;
float* source0=source;
float* source1=source0+size128;
float* source2=source1+size128;
float* source3=source2+size128;
while(pDest<pDestEnd)
{
*pDest=_mm_set_ps(*source3,*source2,*source1,*source0);
source0++;
source1++;
source2++;
source3++;
pDest++;
}
}
void SSETools::unpack128(float* target, float* source, unsigned long size128)
{
float* pSrc = source;
float* pSrcEnd = pSrc+size128*4;
float* target0=target;
float* target1=target0+size128;
float* target2=target1+size128;
float* target3=target2+size128;
while(pSrc<pSrcEnd)
{
*target0=pSrc[0];
*target1=pSrc[1];
*target2=pSrc[2];
*target3=pSrc[3];
target0++;
target1++;
target2++;
target3++;
pSrc+=4;
}
}

39
ext/kissfft/TIPS vendored

@ -0,0 +1,39 @@ @@ -0,0 +1,39 @@
Speed:
* If you want to use multiple cores, then compile with -openmp or -fopenmp (see your compiler docs).
Realize that larger FFTs will reap more benefit than smaller FFTs. This generally uses more CPU time, but
less wall time.
* experiment with compiler flags
Special thanks to Oscar Lesta. He suggested some compiler flags
for gcc that make a big difference. They shave 10-15% off
execution time on some systems. Try some combination of:
-march=pentiumpro
-ffast-math
-fomit-frame-pointer
* If the input data has no imaginary component, use the kiss_fftr code under tools/.
Real ffts are roughly twice as fast as complex.
* If you can rearrange your code to do 4 FFTs in parallel and you are on a recent Intel or AMD machine,
then you might want to experiment with the USE_SIMD code. See README.simd
Reducing code size:
* remove some of the butterflies. There are currently butterflies optimized for radices
2,3,4,5. It is worth mentioning that you can still use FFT sizes that contain
other factors, they just won't be quite as fast. You can decide for yourself
whether to keep radix 2 or 4. If you do some work in this area, let me
know what you find.
* For platforms where ROM/code space is more plentiful than RAM,
consider creating a hardcoded kiss_fft_state. In other words, decide which
FFT size(s) you want and make a structure with the correct factors and twiddles.
* Frank van der Hulst offered numerous suggestions for smaller code size and correct operation
on embedded targets. "I'm happy to help anyone who is trying to implement KISSFFT on a micro"
Some of these were rolled into the mainline code base:
- using long casts to promote intermediate results of short*short multiplication
- delaying allocation of buffers that are sometimes unused.
In some cases, it may be desirable to limit capability in order to better suit the target:
- predefining the twiddle tables for the desired fft size.

167
ext/kissfft/_kiss_fft_guts.h vendored

@ -0,0 +1,167 @@ @@ -0,0 +1,167 @@
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
/* kiss_fft.h
defines kiss_fft_scalar as either short or a float type
and defines
typedef struct { kiss_fft_scalar r; kiss_fft_scalar i; }kiss_fft_cpx; */
#ifndef _kiss_fft_guts_h
#define _kiss_fft_guts_h
#include "kiss_fft.h"
#include "kiss_fft_log.h"
#include <limits.h>
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#ifdef FIXED_POINT
#include <stdint.h>
#if (FIXED_POINT==32)
# define FRACBITS 31
# define SAMPPROD int64_t
#define SAMP_MAX INT32_MAX
#define SAMP_MIN INT32_MIN
#else
# define FRACBITS 15
# define SAMPPROD int32_t
#define SAMP_MAX INT16_MAX
#define SAMP_MIN INT16_MIN
#endif
#if defined(CHECK_OVERFLOW)
# define CHECK_OVERFLOW_OP(a,op,b) \
if ( (SAMPPROD)(a) op (SAMPPROD)(b) > SAMP_MAX || (SAMPPROD)(a) op (SAMPPROD)(b) < SAMP_MIN ) { \
KISS_FFT_WARNING("overflow (%d " #op" %d) = %ld", (a),(b),(SAMPPROD)(a) op (SAMPPROD)(b)); }
#endif
# define smul(a,b) ( (SAMPPROD)(a)*(b) )
# define sround( x ) (kiss_fft_scalar)( ( (x) + (1<<(FRACBITS-1)) ) >> FRACBITS )
# define S_MUL(a,b) sround( smul(a,b) )
# define C_MUL(m,a,b) \
do{ (m).r = sround( smul((a).r,(b).r) - smul((a).i,(b).i) ); \
(m).i = sround( smul((a).r,(b).i) + smul((a).i,(b).r) ); }while(0)
# define DIVSCALAR(x,k) \
(x) = sround( smul( x, SAMP_MAX/k ) )
# define C_FIXDIV(c,div) \
do { DIVSCALAR( (c).r , div); \
DIVSCALAR( (c).i , div); }while (0)
# define C_MULBYSCALAR( c, s ) \
do{ (c).r = sround( smul( (c).r , s ) ) ;\
(c).i = sround( smul( (c).i , s ) ) ; }while(0)
#else /* not FIXED_POINT*/
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#endif
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
#ifdef FIXED_POINT
# define KISS_FFT_COS(phase) floor(.5+SAMP_MAX * cos (phase))
# define KISS_FFT_SIN(phase) floor(.5+SAMP_MAX * sin (phase))
# define HALF_OF(x) ((x)>>1)
#elif defined(USE_SIMD)
# define KISS_FFT_COS(phase) _mm_set1_ps( cos(phase) )
# define KISS_FFT_SIN(phase) _mm_set1_ps( sin(phase) )
# define HALF_OF(x) ((x)*_mm_set1_ps(.5))
#else
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
# define HALF_OF(x) ((x)*((kiss_fft_scalar).5))
#endif
#define kf_cexp(x,phase) \
do{ \
(x)->r = KISS_FFT_COS(phase);\
(x)->i = KISS_FFT_SIN(phase);\
}while(0)
/* a debugging function */
#define pcpx(c)\
KISS_FFT_DEBUG("%g + %gi\n",(double)((c)->r),(double)((c)->i))
#ifdef KISS_FFT_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
#include <alloca.h>
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_TMP_FREE(ptr)
#else
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
#endif
#endif /* _kiss_fft_guts_h */

109
ext/kissfft/kfc.c vendored

@ -0,0 +1,109 @@ @@ -0,0 +1,109 @@
/*
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "kfc.h"
typedef struct cached_fft *kfc_cfg;
struct cached_fft
{
int nfft;
int inverse;
kiss_fft_cfg cfg;
kfc_cfg next;
};
static kfc_cfg cache_root=NULL;
static int ncached=0;
static kiss_fft_cfg find_cached_fft(int nfft,int inverse)
{
size_t len;
kfc_cfg cur=cache_root;
kfc_cfg prev=NULL;
while ( cur ) {
if ( cur->nfft == nfft && inverse == cur->inverse )
break;/*found the right node*/
prev = cur;
cur = prev->next;
}
if (cur== NULL) {
/* no cached node found, need to create a new one*/
kiss_fft_alloc(nfft,inverse,0,&len);
#ifdef USE_SIMD
int padding = (16-sizeof(struct cached_fft)) & 15;
// make sure the cfg aligns on a 16 byte boundary
len += padding;
#endif
cur = (kfc_cfg)KISS_FFT_MALLOC((sizeof(struct cached_fft) + len ));
if (cur == NULL)
return NULL;
cur->cfg = (kiss_fft_cfg)(cur+1);
#ifdef USE_SIMD
cur->cfg = (kiss_fft_cfg) ((char*)(cur+1)+padding);
#endif
kiss_fft_alloc(nfft,inverse,cur->cfg,&len);
cur->nfft=nfft;
cur->inverse=inverse;
cur->next = NULL;
if ( prev )
prev->next = cur;
else
cache_root = cur;
++ncached;
}
return cur->cfg;
}
void kfc_cleanup(void)
{
kfc_cfg cur=cache_root;
kfc_cfg next=NULL;
while (cur){
next = cur->next;
free(cur);
cur=next;
}
ncached=0;
cache_root = NULL;
}
void kfc_fft(int nfft, const kiss_fft_cpx * fin,kiss_fft_cpx * fout)
{
kiss_fft( find_cached_fft(nfft,0),fin,fout );
}
void kfc_ifft(int nfft, const kiss_fft_cpx * fin,kiss_fft_cpx * fout)
{
kiss_fft( find_cached_fft(nfft,1),fin,fout );
}
#ifdef KFC_TEST
static void check(int nc)
{
if (ncached != nc) {
fprintf(stderr,"ncached should be %d,but it is %d\n",nc,ncached);
exit(1);
}
}
int main(void)
{
kiss_fft_cpx buf1[1024],buf2[1024];
memset(buf1,0,sizeof(buf1));
check(0);
kfc_fft(512,buf1,buf2);
check(1);
kfc_fft(512,buf1,buf2);
check(1);
kfc_ifft(512,buf1,buf2);
check(2);
kfc_cleanup();
check(0);
return 0;
}
#endif

54
ext/kissfft/kfc.h vendored

@ -0,0 +1,54 @@ @@ -0,0 +1,54 @@
/*
* Copyright (c) 2003-2004, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#ifndef KFC_H
#define KFC_H
#include "kiss_fft.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
KFC -- Kiss FFT Cache
Not needing to deal with kiss_fft_alloc and a config
object may be handy for a lot of programs.
KFC uses the underlying KISS FFT functions, but caches the config object.
The first time kfc_fft or kfc_ifft for a given FFT size, the cfg
object is created for it. All subsequent calls use the cached
configuration object.
NOTE:
You should probably not use this if your program will be using a lot
of various sizes of FFTs. There is a linear search through the
cached objects. If you are only using one or two FFT sizes, this
will be negligible. Otherwise, you may want to use another method
of managing the cfg objects.
There is no automated cleanup of the cached objects. This could lead
to large memory usage in a program that uses a lot of *DIFFERENT*
sized FFTs. If you want to force all cached cfg objects to be freed,
call kfc_cleanup.
*/
/*forward complex FFT */
void KISS_FFT_API kfc_fft(int nfft, const kiss_fft_cpx * fin,kiss_fft_cpx * fout);
/*reverse complex FFT */
void KISS_FFT_API kfc_ifft(int nfft, const kiss_fft_cpx * fin,kiss_fft_cpx * fout);
/*free all cached objects*/
void KISS_FFT_API kfc_cleanup(void);
#ifdef __cplusplus
}
#endif
#endif

420
ext/kissfft/kiss_fft.c vendored

@ -0,0 +1,420 @@ @@ -0,0 +1,420 @@
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
#include "_kiss_fft_guts.h"
/* The guts header contains all the multiplication and addition macros that are defined for
fixed or floating point complex numbers. It also delares the kf_ internal functions.
*/
static void kf_bfly2(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx * Fout2;
kiss_fft_cpx * tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do{
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
C_MUL (t, *Fout2 , *tw1);
tw1 += fstride;
C_SUB( *Fout2 , *Fout , t );
C_ADDTO( *Fout , t );
++Fout2;
++Fout;
}while (--m);
}
static void kf_bfly4(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
)
{
kiss_fft_cpx *tw1,*tw2,*tw3;
kiss_fft_cpx scratch[6];
size_t k=m;
const size_t m2=2*m;
const size_t m3=3*m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
C_MUL(scratch[0],Fout[m] , *tw1 );
C_MUL(scratch[1],Fout[m2] , *tw2 );
C_MUL(scratch[2],Fout[m3] , *tw3 );
C_SUB( scratch[5] , *Fout, scratch[1] );
C_ADDTO(*Fout, scratch[1]);
C_ADD( scratch[3] , scratch[0] , scratch[2] );
C_SUB( scratch[4] , scratch[0] , scratch[2] );
C_SUB( Fout[m2], *Fout, scratch[3] );
tw1 += fstride;
tw2 += fstride*2;
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
if(st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
}else{
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
}while(--k);
}
static void kf_bfly3(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
)
{
size_t k=m;
const size_t m2 = 2*m;
kiss_fft_cpx *tw1,*tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride*m];
tw1=tw2=st->twiddles;
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
}while(--k);
}
static void kf_bfly5(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=st->twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m,
int p
)
{
int u,k,q1,q;
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p);
if (scratch == NULL){
KISS_FFT_ERROR("Memory allocation failed.");
return;
}
for ( u=0; u<m; ++u ) {
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
scratch[q1] = Fout[ k ];
C_FIXDIV(scratch[q1],p);
k += m;
}
k=u;
for ( q1=0 ; q1<p ; ++q1 ) {
int twidx=0;
Fout[ k ] = scratch[0];
for (q=1;q<p;++q ) {
twidx += fstride * k;
if (twidx>=Norig) twidx-=Norig;
C_MUL(t,scratch[q] , twiddles[twidx] );
C_ADDTO( Fout[ k ] ,t);
}
k += m;
}
}
KISS_FFT_TMP_FREE(scratch);
}
static
void kf_work(
kiss_fft_cpx * Fout,
const kiss_fft_cpx * f,
const size_t fstride,
int in_stride,
int * factors,
const kiss_fft_cfg st
)
{
kiss_fft_cpx * Fout_beg=Fout;
const int p=*factors++; /* the radix */
const int m=*factors++; /* stage's fft length/p */
const kiss_fft_cpx * Fout_end = Fout + p*m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride==1 && p<=5 && m!=1)
{
int k;
// execute the p different work units in different threads
# pragma omp parallel for
for (k=0;k<p;++k)
kf_work( Fout +k*m, f+ fstride*in_stride*k,fstride*p,in_stride,factors,st);
// all threads have joined by this point
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;